4 research outputs found

    Multi-Scale Hierarchical Conditional Random Field for Railway Electrification Scene Classification Using Mobile Laser Scanning Data

    Get PDF
    With the recent rapid development of high-speed railway in many countries, precise inspection for railway electrification systems has become more significant to ensure safe railway operation. However, this time-consuming manual inspection is not satisfactory for the high-demanding inspection task, thus a safe, fast and automatic inspection method is required. With LiDAR (Light Detection and Ranging) data becoming more available, the accurate railway electrification scene understanding using LiDAR data becomes feasible towards automatic 3D precise inspection. This thesis presents a supervised learning method to classify railway electrification objects from Mobile Laser Scanning (MLS) data. First, a multi-range Conditional Random Field (CRF), which characterizes not only labeling homogeneity at a short range, but also the layout compatibility between different objects at a middle range in the probabilistic graphical model is implemented and tested. Then, this multi-range CRF model will be extended and improved into a hierarchical CRF model to consider multi-scale layout compatibility at full range. The proposed method is evaluated on a dataset collected in Korea with complex railway electrification systems environment. The experiment shows the effectiveness of proposed model

    Multi-Range Conditional Random Field for Classifying Railway Electrification System Objects Using Mobile Laser Scanning Data

    No full text
    Railways have been used as one of the most crucial means of transportation in public mobility and economic development. For safe railway operation, the electrification system in the railway infrastructure, which supplies electric power to trains, is an essential facility for stable train operation. Due to its important role, the electrification system needs to be rigorously and regularly inspected and managed. This paper presents a supervised learning method to classify Mobile Laser Scanning (MLS) data into ten target classes representing overhead wires, movable brackets and poles, which are key objects in the electrification system. In general, the layout of the railway electrification system shows strong spatial regularity relations among object classes. The proposed classifier is developed based on Conditional Random Field (CRF), which characterizes not only labeling homogeneity at short range, but also the layout compatibility between different object classes at long range in the probabilistic graphical model. This multi-range CRF model consists of a unary term and three pairwise contextual terms. In order to gain computational efficiency, MLS point clouds are converted into a set of line segments to which the labeling process is applied. Support Vector Machine (SVM) is used as a local classifier considering only node features for producing the unary potentials of the CRF model. As the short-range pairwise contextual term, the Potts model is applied to enforce a local smoothness in the short-range graph; while long-range pairwise potentials are designed to enhance the spatial regularities of both horizontal and vertical layouts among railway objects. We formulate two long-range pairwise potentials as the log posterior probability obtained by the naive Bayes classifier. The directional layout compatibilities are characterized in probability look-up tables, which represent the co-occurrence rate of spatial relations in the horizontal and vertical directions. The likelihood function is formulated by multivariate Gaussian distributions. In the proposed multi-range CRF model, the weight parameters to balance four sub-terms are estimated by applying the Stochastic Gradient Descent (SGD). The results show that the proposed multi-range CRF can effectively classify individual railway elements, representing an average recall of 97.66% and an average precision of 97.07% for all classes
    corecore